When we think of static in our everyday lives, most of us think nuisance—static cling, particle attraction, irritating static shocks. To perceive these common effects of static electricity—to feel a static shock—the discharge must be at least 3500 volts. Though we may not enjoy feeling a 3.5 kV shock, it’s no big deal—to us.
A hand reaching for a door knob to demonstrate an ESD event - a shock from touching metal - that might be felt by a humanElectronic components built or assembled in electronics manufacturing plants, circuit boards, hand-held electronic devices, headsets, and sophisticated computer equipment typically used in labs, hospitals, server rooms, FAA flight towers, 9-1-1 dispatch operations, mission-critical call centers—even in theaters and casinos—contain microelectronic parts that are highly sensitive to minute changes in electrical current.
So sensitive, in fact, that they can be damaged (and data compromised, if not lost or destroyed) by a static discharge as low as 20 volts. Well below the human threshold for perception.
We’ve all, at one time or another, been slowed down, laid-up, or knocked out by a cold. A static discharge of 20 volts is about as perceptible as breathing the germs that cause the common cold. We don’t know they are there—until